Inter-Calibration of Passive Microwave Satellite Brightness Temperatures Observed by F13 SSM/I and F17 SSMIS for the Retrieval of Snow Depth on Arctic First-Year Sea Ice
نویسندگان
چکیده
Passive microwave satellite brightness temperatures (TB) that were observed by the F13 Special Sensor Microwave/Imager (SSM/I) and the subsequent F17 Special Sensor Microwave Imager/Sounder (SSMIS) were inter-calibrated using empirical relationship models during their overlap period. Snow depth (SD) on the Arctic first-year sea ice was further retrieved. The SDs derived from F17 TB and F13C TB which were calibrated F17 TB using F13 TB as the baseline were then compared and evaluated against in situ SD measurements based on the Operational IceBridge (OIB) airborne observations from 2009 to 2013. Results show that Cavalieri inter-calibration models (CA models) perform smaller root mean square error (RMSE) than Dai inter-calibration models (DA models), and the standard deviation of OIB SDs in the 25 km pixels is around 6 cm on first-year sea ice. Moreover, the SDs derived from the calibrated F17 TB using F13 TB as the baseline were in better agreement than the F17 SDs as compared with OIB SDs, with the biases of −2 cm (RMSE of 5 cm) and −9 cm (RMSE of 10 cm), respectively. We conclude that TB observations from F17 SSMIS calibrated to F13 SSM/I as the baseline should be recommended when performing the sensors’ biases correction for SD purpose based on the existing algorithm. These findings could serve as a reference for generating more consistent and reliable TB, which could help to improve the retrieval and analysis of long-term snow depth on the Arctic first-year sea ice.
منابع مشابه
Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2
For four decades, satellite-based passive microwave sensors have provided valuable snow water equivalent (SWE) monitoring at a global scale. Before continuous long-term SWE records can be used for scientific or applied purposes, consistency of SWE measurements among different sensors is required. SWE retrievals from two passive sensors currently operating, the Special Sensor Microwave Imager So...
متن کاملInter-Calibrating SMMR, SSM/I and SSMI/S Data to Improve the Consistency of Snow-Depth Products in China
Long-term snow depth/snow water equivalent (SWE) products derived from passive microwave remote sensing data are fundamental for climatological and hydrological studies. However, the temporal continuity of the products is affected by the updating or replacement of passive microwave sensors or satellite platforms. In this study, we inter-calibrated brightness temperature (Tb) data obtained from ...
متن کاملSnow thickness retrieval over thick Arctic sea ice using SMOS satellite data
The microwave interferometric radiometer of the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission measures at a frequency of 1.4 GHz in the L-band. In contrast to other microwave satellites, low frequency measurements in L-band have a large penetration depth in sea ice and thus contain information on the ice thickness. Previous ice thickness retrievals have neglected a sno...
متن کاملMultiyear Arctic Ice Classification Using ASCAT and SSMIS
The concentration, type, and extent of sea ice in the Arctic can be estimated based on measurements from satellite active microwave sensors, passive microwave sensors, or both. Here, data from the Advanced Scatterometer (ASCAT) and the Special Sensor Microwave Imager/Sounder (SSMIS) are employed to broadly classify Arctic sea ice type as first-year (FY) or multiyear (MY). Combining data from bo...
متن کاملEstimation of snow water equivalent over first-year sea ice using AMSR-E and surface observations
Keywords: Snow water equivalent Arctic First-year sea ice Passive microwaves Surface based radiometer AMSR-E Ice roughness Climate change A SWE retrieval algorithm developed in-situ using passive microwave surface based radiometer data is applied to the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E). Snow water equivalent is predicted from two pixels located in Can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018